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Classical "Freezing" of Plane Rotations: 
A Proof of the Boltzmann-Jeans Conjecture 
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Using simple known methods and results of classical perturbation theory, espe- 
cially those due to Nekhoroshev and Neishtadt, we study the energy exchanges 
between the rotational and the translational degrees of freedom in a particular 
model representing the planar motion of a rigid body in a bounded analytic 
potential. We prove that, if the angular velocity co is initially large, then the 
energy exchanges are small, O(co 1), for times growing exponentially with co, 
Ill ~ exp co. We also deduce that in a scattering process from a (smooth) poten- 
tial barrier, the overall change in the rotational energy of the incoming body is 
exponentially small in co, g ~ exp(-co) .  The results are interpreted in the light 
of an old conjecture by Boltzmann and Jeans on the existence of very large time 
scales for equilibrium in statistical systems containing high-frequency degrees of 
freedom (purely classical "freezing" of the high-frequency degrees of freedom); 
the rotating object is, in this interpretation, a (classical) molecule, which moves 
in an external field, or collides with the wall of a container. Two different limits 
of large co are considered, namely the limit of large rotational energy, and (as 
is interesting for the molecular interpretation) the limit of point mass, at finite 
rotational energy. 

KEY WORDS: Perturbation theory; exponential estimates; equipartition 
rate; Boltzmann Jeans conjecture. 

1. I N T R O D U C T I O N  

1.1. This paper is devoted to a study of the planar motion of a fast 
rotating rigid body, in the realm of Hamiltonian perturbation theory. 
Denoting by q = (q~, q2) the coordinates of the center of mass, by ~o an 
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angle giving the orientation of the body, and by p = (p,,  p j  and I the 
corresponding momenta, the Hamiltonian has the form 

i 2 p2 
h(p, q, I, (p)= ~ +  ~m + v(q, (p) (1.1) 

where q E N2, p c  N2, I t  ~, q ~ S  ~, and p 2 = p Z + p 2 ;  the constants m and 
C denote, respectively, the mass and the moment of inertia of the body. 
The purely positional potential v is assumed to be real analytic and 
bounded. 

Because of the coupling term v, there could be in principle any transfer 
of energy between the rotational and the translational degrees of freedom. 
Nevertheless, using ideas and adapting results of perturbation theory, due 
essentially to Nekhoroshev (1-3) and Neishtadt, (4) we show that, if the 
angular velocity co(I)=I/C is initially large, then significant energy 
exchanges can take place only on extremely long time scales. Indeed, it 
turns out that the energy exchanges remain small, say (9(co-1), for a time 
scale Y growing exponentially fast with co: 

~- = Jo exp(~co) (1.2) 

go and r are suitable constants. 
Moreover, we consider explicitly the case of the scattering of the body 

by a fixed obstacle; we describe the obstacle by a smooth potential, decay- 
ing at infinity in an integrable way, and prove that after the scattering, the 
rotational energy I2/2C differs from the initial value by a quantity 
exponentially small with co, 

g = go exp(-zco) (1.3) 

One should remark that the angular velocity co of the body can be 
large either because I is large (limit of high rotational energy), or else, at 
fixed finite rotational energy, because C is small (limit of point mass). The 
latter is the case of a small body of diameter proportional to a small 
parameter 5. The moment of inertia is then C =  (9(52), so that for small 
values of the angular momentum, I=(9(5), one has co=(9(5 ~) and 
I2/2C= (9(1). We shall consider both these cases. 

1.2. Apart from the (strong) limitation to two dimensions (see the 
Conclusions for comments), such problems arise in quite different 
frameworks: for instance, the body could be a fast rotating nonspherical 
asteroid having a close encounter with a planet. However, our personal 
motivations come from microphysics, namely from an old, almost forgotten 
conjecture by Boltzmann (s) and Jeans, (6'7) only recently reconsidered (see 
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refs. 8 12). The essence of this conjecture (which was proposed before the 
advent of quantum mechanics) is that the "freezing" of the high-frequency 
degrees of freedom (today often reported as a typical purely quantum 
feature) could be explained classically, as a nonequilibrium phenomenon. 

Let us consider, as a model example, a diatomic gas. On the basis of 
the principle of equipartition of energy, one expects (classically) seven con- 
tributions per molecule to the specific heat (three from translations, two 
from rotations, one kinetic and one potential from vibrations), so that 
C , =  7R. On the contrary, at ordinary temperatures one finds C~= ~R 
(freezing of vibrations), and at lower temperatures, Cv--~R (freezing of 
rotations), as for monoatomic gases. Moreover, following Boltzmann, in 
principle one should also take into consideration the internal degrees of 
freedom of the atoms, and thus expect a higher specific heat, even in the 
case of monoatomic gases; in fact, even if one represents an atom as a small 
hard sphere, neglecting any further internal structure, one should wonder, 
classically, why its rotational degrees of freedom do not contribute to the 
specific heat (actually, we study the point-mass limit just as a model for 
this question). 

The answer proposed by Boltzmann and Jeans is simply that an 
appreciable energy exchange with a high-frequency degree of freedom 
requires an extremely long time scale ("years"(5); "hundreds of cen- 
turies"(6)), so that, in any reasonable experiment, these degrees of freedom 
behave as if they were frozen. Jeans, in particular, on the basis of some 
heuristic considerations, proposed an exponential law for the energy 
exchange due to a collision which is precisely of the form (1.3) and, corre- 
spondingly, a relaxation time growing exponentially with co, as in (1.2). 
A similar law was later reconsidered, in a different framework, by Landau 
and Teller, (13) still on the basis of heuristic considerations; it also appears 
in connection with collisions of molecules (see typically ref. 14) or in 
plasma physics (see, for example, ref. 15). None of these authors, however, 
is apparently aware of Jeans' ideas. 

The conjecture by Boltzmann and Jeans was successfully tested 
numerically (8l on an oversimplified one-dimensional model of purely 
vibrating and translating molecules. The freezing of fast vibrations was 
later proven analytically, within suitable assumptions, in refs. 9 and 10. 
Concerning the freezing of fast rotations, in the case of high rotational 
energy, an accurate numerical study for a planar model of the form (1.1) 
is reported in ref. 16, which is rather deeply connected to the present 
paper. 3 In this paper, we perform a further step toward the understanding 

3 Strong evidence is given there of the possible "freezing" of the rotational degrees of freedom 
for macroscopic times. 
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of the Boltzmann-Jeans conjecture, by providing the analytical proof of the 
exponential laws (1.2) and (1.3) for a Hamiltonian like (1.1). 

1.3. A natural tool for problems with fast and slow variables is 
classical perturbation theory. As a matter of fact, the proofs we are looking 
for are rather simple applications of the ideas and techniques of the 
Nekhoroshev theorem (~-3) (see also refs. 17 and 18). More specifically, our 
results for the case of large rotational energy (~o -~ ~ at fixed moment of 
inertia) are in principle contained in a paper by Neishtadt. (4/ Unfor- 
tunately, the theorem proved by Neishtadt is too general, and not suf- 
ficiently detailed, for our purposes; in addition, no explicit estimate of the 
relevant constants is there produced. We reconsider Neishtadt's results 
here. Let us also remark that the point-mass limit (I2/2C fixed, C--, 0) 
cannot be deduced from the previous case by a simple rescaling. Indeed, in 
order to keep finite the rotational energy, one must take I =  (9(e); one is 
then forced to use a perturbative scheme in which the I domain shrinks to 
zero for e--,0, and consequently the whole perturbation scheme gets 
modified (in fact, such a case resembles more closely the one of refs. 9, 10, 
and 19 rather than the Neishtadt one). For brevity, we shall not give com- 
plete proofs for this case, limiting ourselves to a sketch of the differences. 

1.4. The paper is organized as follows. Section 2 and 3 are devoted 
to the case of high rotational energy; in Section 2 we appropriately for- 
mulate the problem, and state a basic proposition (Proposition 1), while in 
Section 3 we deduce from it two corollaries, concerning the exponential 
laws (1.2) and (1.3). Section 4 is devoted to the point-mass limit. Section 5 
reports the proof of Proposition 1, together with a sketch of the similar 
proof for the point-mass limit. A conclusion follows. 

2. THE P E R T U R B A T I V E  A P P R O A C H  

Let us formulate the problem in a slightly more general and mathe- 
matically more suitable framework. We consider the Hamilton function 

h(p, q, I, ~o)=k(I)  + u(p, q, I, ~o) (2.1) 

and assume it be real analytic for ( P , q ) = ( P l  ..... Pn, ql ..... q , , ) s ~ ,  a 
domain in R 2" (n~> 1), I s  J ,  a real interval (or just a point), and cp~S 1. 
In the sequel, we shall denote z = (p, q, I) and let 

A o = ~ X J ,  ~ o = A o x S  1 
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[so that z e A o  and (z, (P)e30]. We shall assume that the Hamiltonian 
(2.1) has an analytic extension, bounded together with its first derivatives, 
to a complex neighborhood 3p of 3 o, defined as follows. With reference to 
an "extension vector" 

P = (Pp, Pq, P,, P~o) (2.2) 

having positive entries (which will play the role of parameters), we intro- 
duce the polydisc Ao.z, the strip 5~p, and the domain Ap defined by 

Ap, z= {z'eCZn+l: I I ' -  II < pz, I p j -  pjI < Op, Iq j -q i l  < pq ,J= l,..., n} 

" d o =  U A p ,  z 
z E .d 0 

We then consider the complex domains 

3,=gpxJp, ..@p,z = Ap.~ x 5ep (z e Zlo) (2.3) 

Notice that the latter is global in the angle ~0, but local in the remaining 
coordinates. These local domains are important only for the case of the 
scattering. 

Inequalities of the form p ' <  p, for extension vectors, are intended to 
work separately on each entry; with no possibility of confusion, we shall 
denote by p both the vector in (2.2) and the real number p defined by 

p2 = min(pppq, P,P~o) (2.4) 

For practical convenience, the nonrestrictive assumption P~o ~< 1 is made. 
Concerning norms, we refer to the supremum norm, and denote, for 

any function w: 3 o ~ C, 

Iwlp= sup Iw(z,~o)l (2.5) 
(z ,~o)e~p 

The use of the "local norm" 

Fwlp, z = sup rw(z', (p)J, z e A o  (2.6) 
(z', q~) e ~p,~ 

will be relevant for the treatment of the scattering. We shall also consider 
a "vector field norm" of functions, defined in the following way: for any 
vector ~ ~ p, and any function w: 3o ~ C, we let 

~ W  ~r Irwll~= max Pa-~a  (2.7) 
a = p , q , I ,  cp 



742 Benettin and Fassb 

Clearly, this is nothing but a convenient norm of the Hamiltonian vector 
field W corresponding to the Hamilton function w, namely, with obvious 
notation, 

Ow Ow ~w Ow 
w =  - T q  o (2.8) 

One could remark that one does not really need to introduce such a norm 
(indeed, it would be enough to assume that w is analytic in @2p to have, 
by Cauchy inequality, tlwllo~< IWlRp). Nevertheless, it is in a sense more 
natural, and perhaps illuminating, to distinguish, in the statements as well 
in the proofs, between properties intrinsically connected to the norm of the 
Hamilton functions (essentially, properties related to the energy conserva- 
tion) and properties that are instead more directly related to the norm of 
the corresponding vector fields. 

The natural small parameter of the perturbative treatment will be 
/20//2, where 

/2= ,~infe~ 0 k ( I ) ,  /2o=p -2 [lullp (2.9) 

The interpretation of D o is easy: its inverse gives, in the simplest (perhaps 
not optimal) way, a time scale naturally associated to u in the Hamiltonian 
(2.1). The constant 

C-  1 ~32k = ~-~ p (2.10) 

will also have some role [C is the moment of inertia, if k(I) is quadratic 
in I]. 

Working perturbatively, we give the Hamiltonian (2.1) a 
(p-independent normal form, up to a remainder exponentially small in /2. 
Precisely, we prove the following Proposition: 

Proposition 1. Within the above notations and assumptions, let 

/ 
D >/max tD*, 

\ Cp~] 
(2.11) 

where 

2 10 
g2* = 2'O/2o - = 7  LluHR (2.!2) 
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Then: ( i )one  can construct a real analytic canonical transformation 
(g: ~ p  ~ ~p, (z, cp)= Cg(z', (p'), which gives the new Hamiltonian h'= h o 
the form 

.(2* ~Q* 
h' = k(I') + 6(p', q', I') + ~ -  g(p', q', I') + -~- e-Ea/n*]f(p,, q,, I', ~o') 

(2.13) 

where [ - ]  denotes the integer part, and ~7= (2~) - I  ~2=u d~o is the average 
of u on (p. 

For any z ~ Ao, the functions g and f i n  (2.13) satisfy the (local) (ii) 
estimates 

Ig]~p,~ ~< 2 -3 lu-~ttp,, (2.14a) 

[ f [ { p , ~  < 2 - 5  ] u -  ~lo,, (2.14b) 

8 f  2-9_ ~q) ~p,z ~ ~ p,z (2.14c) 

(iii) The diffeomorphism (g is close to the identity: precisely, for any 
(z, ~o) s ~ p  and any function w: ~p -~ C, one has 

16 ~?u p.z Q* pa'-al  ~ - ~  ~gt <~2 6--ffp a (a=p,  q, I) (2.15a) 

16 ~*  
lop'-~01 ~ ~p-~p~ Hull,,._<~2-o-ffp~o (2.15b) 

]w(z', cp')- w(z, qo)l ~ 2 -  --ff lwlp, z (2.15c) 

where ~ denotes the variable conjugate to a. 

The proof of Proposition 1 is deferred to Section 5. 

3. F R E E Z I N G  OF H I G H - E N E R G Y  R O T A T I O N S  

We consider here the particular case of the Hamiltonian (1.1), i.e., the 
case n = 2, k = f / 2 C ,  u = p2/2m + v(q, (p). We draw from Proposition 1 two 
corollaries, one relative to the general case of a bounded potential, the 
other dedicated to the special case of scattering. 



744 Benet t in  and Fass6 

3.1. Freezing of Fast Rotations 

Let us write h = h + h, with 

p2 12 
h = ~m + ~5(q), h =  ~-~+ v(q, q)) - f(q) (3.t) 

Our aim is to show that, if the initial angular velocity c o =  C -1 I1(0)1 iS 
large enough, then it changes little and, moreover, /~ and h are separately 
almost constant, for times growing exponentially with co. 

To be definite, we assume that v(q, (p) is everywhere bounded and, 
more precisely, that it has a bounded analytic extension to the set 
{(q, ~~ eC3: lira qll <Pq, IIm q2l <[q, IIm ~0l <p~}, for s o m e  pq>O and 
p w > 0 .  

C o r o l l a r y  1. Within the above hypotheses, consider a positive 
number E >  2(llvt/p + Ivlp), and let 

2~3(2E~ ~/2 
co* = - -  - -  ( 3 . 2 )  

Oq \ m /  

Then, any real motion (p(t), q(t), I(t), q)(t)) of system (1.1) whose initial 
data are such that 

p(O) 2 
~< E (3.3a) 

2m 

c~ max (2co,,16pq (3.3b) 

satisfies 4 

2 6 Ov 
L I ( t )  - 1(0)1 ~< - -  (3.4a) c o ~ p  

I2  /5 " CO* 
~ - ~ + v -  o~<3--Eco (3.4b) 

for 

1 o ~ (3.5) 

4 Here and in the following we use, for any function x, the short notation ]x[~= Ex(t)-x(O)l. 
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2 ProoL We apply Proposition 1, with ~ = { q ~ R 2, p /2m <~ E}, ~ = 
{I(0)}, pp=2(2mE) ~/2, and P;=PvPq/P~o. An easy calculation then gives 

--~np = 9E, = 12E 
2m p 

II']lp Z (2E~ 1/2, co* 
p2 ~ ) 2s 

p q \ r n /  

(3.6) 

Furthermore, one has clearly s = co-p;/C, so that, by (3.3b) and (3.2), 
f2 ~> co/2 and sg/f2* >~ co/co*. 

Consider now a real motion (z(t), (p(t)), with z(0)e A o, and let Te+c be 
its (possibly infinite) escape time from ~ v "  From (2.13) and (2.14) one 
derives 

1 co* Ov 
- -  e -  E~/~*3 ( 3 . 7 )  }I'(t)-I'(O)] <~ Itl ~ co ~ 

as long as Itl ~< T~+c, and consequently 

lco* (?_~ p 
II'(t)-I'(O)] <~--~ p~ (3.8) 

for Itt ~<min(Tesc, T), T being defined by the rhs of (3.5). From (3.8), 
(2.15a), (3.2), and (3.3b), one gets the two inequalities 

.< l co, ~ 
J I ( t )  - I(0)1 -.~ 2 ~-7 

f/CO -/(o)1 .~ 2 

32 3v p 2 6 3V 
P~o + ~- ~--~ < -  co &op 

(3.9a) 

the first of which proves (3.4a), for times Itl ~ rain(Test, T). 
Concerning (3.4b), one first computes, using again (3.8), (2.15a), and 

(3.3b), 

1'2 ;0 1 ~-~ <~-~ rI'(t)-I'(O)l[lI'(t)-I'(O)l + 2  I1 ' (0)-I(0)I  + 2  pI(0)I] 

CO* 
~<o.6--Ilvl/p 

CO 

Thus, using energy conservation and then the inequalities (2.14a) and 
(2.14b), one gets 

i,2 t CO, 1 CO* 
] /~(p , ,q , ) l~  < 2-C o + _ ~ _ ( i g l ~ + e  Eo~/,,*3 ifl/~)~<~_~_ E (3.10) 

CO* CO* p~o+2-6--pi<2-S--pi (3.9b) 
O9 CO 
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Applying (2.15c) to the function h, one then obtains 

1 co* co* 
I/~(P, q ) l ~  < I/~(P', q')l;  + ~--o-I/~lp ~ <3  --Eco (3.11) 

We now show that, under the stated hypotheses, T~s c/> T. To this pur- 
pose, one needs to show that the coordinates p(t) and I(t) do not escape 
~ p ,  for [t I ~< T. This is seen by the standard argument: should one have 
Tesc < T, then at t = T~o, one at least of (3.4) would be violated. For  the 
latter coordinate, this is assured by (3.9b); on the other hand, in order for 
p(t) to escape N~e' one would need p(t)2/2m>4E, and thus Ip(t)2/2m - 
p(O)2/2rnl>3E, [h ( t ) -h (O) l>3E-2Lv lp~2E ,  which is in conflict with 
(3.4b) if 60 ~> 2co*. | 

3.2. The  S c a t t e r i n g  

We come now to the scattering problem; here we shall use in an essen- 
tial way the local estimates. First of all, we say that we have a "scattering 
trajectory" (p(t), q(t), l(t), qg(t)), - oe < t < + ~ ,  if the following condi- 
tions are fulfilled: 

lira Iq(t)L = ~ (3.12a) 
t--~ •  

lim p(t)=p-+ •0 (3.12b) 
t - ~  + c o  

f+ 
co 0v o,z(t) 

/3 : =  _ co ~ act < oo (3 .12c)  

In particular, the latter condition assures that (Ov/~o)(q(t), p(t)) goes to 
zero sufficiently fast for t ~  +_o% so that the limits I(_+ oe) also exist. Of 
course, one could make assumptions on v (essentially, repulsivity with 
reference to a fixed scatterer) which ensure the existence of scattering tra- 
jectories: however, assuming directly (3.12) is simpler and, in our opinion, 
more natural in the present framework. The following corollary is then 
easily deduced: 

Corollary 2. For any scattering trajectory, with p -  and 
co= C--lI( - oo) satisfying the conditions (3.3), one has 

I(+oo)2 I ( -oo)2  1 , [ c o ]  
2C 2C <~flTco e x p -  ~ (3.13) 
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with 

7 = l q  fl co*e-E~176 
8coC co 

co* is given by (3.2). 

Proof. One makes the same choice of domains and complex exten- 
sions as for the proof of Corollary 1. In addition to the conclusions of 
Corollary 1, one has now 

1co* f§ J (  ) ( )1 = - -  e Eco /w*]  
. I ' - + ~ 1 7 6 1 7 6 1 7 6  4 co _~ p,~(,) 

1 CO* 
- -  e Ew/c~*]  dt <<. ~ fi co 

(3.14) 

On the other hand, by (3.12c) and (2.15a), at t =  +oo one has I=I ' ,  so 
that the inequality (3.13) is quite obvious, provided p(t), I(t) do not escape 
their domains. This condition, however, is immediately verified if one 
proceeds as in Corollary 1. | 

4. THE P O I N T - M A S S  L IMIT  

4.1. The Per turbat ive  T rea tment  

We consider now the case of a small "molecule" of diameter propor- 
tional to a small parameter e. Since the moment of inertia scales as e 2, say 
one has cg~ = e2C, to keep finite the kinetic energy I2/2e2C= e-2k(I)  one 
needs I N  e, so that the angular velocity co(I) grows as e-1. 

We shall assume that the momentum Ov/&o of the external forces is of 
order e, as is the typical case for regular and purely positional forces; for 
instance, one could assume v = Vo(q)+ ev~(q, q~). We are thus led to study 
a Hamiltonian of the form 

h(p, q, L (p) = a 2k(I) + u(I, p, q, cp, 8) (4.1) 

with 8u/0~o=(9(e), analytic in an (e-dependent) real domain 90 = 
~ x ~ x S 1 ;  here, (p, q ) e ~ ,  a domain in N>', I e ~ ,  a real interval (or a 
point) which reduces to {0} linearly with e, and qo ~S  1. 

We introduce, as in Section 2, the (now e-dependent) complex sets 
Ap, z, Ap, 5~p, and 9 o, with an (e-dependent) vector p = p(e) given by 

p = (p~, pq, p , ( e ) ,  p~),  p , ( e )  = ep ~ (4.2) 

822/63/3-4-21 



748 Benettin and Fass6 

We assume p~ ~< 1 and put 

p~ = min(pppq, p~op ~ (4.3) 

With reference to such domains, we use as above the supremum norm [.[~, 
while for any function w the "vector field norm" is now defined in a slightly 
different way, by 

Hwll~--max pq Oq ~ pp @ ~ pO P~o ~ (4.4) 

We assume that h is analytic in ~p. Moreover [since Qu/&p = (9(e) and 
pz= epO] we assume that there exists a quantity q/z, z e Ao, such that one 

r ~eq/z, pO <<-q/z, Pa <-q/z (a=p,q , I )  P ~ -~ p 

(4.5) 

has 

for every z e A o. Notice that (4.5) implies Hull p,z ~< q/z. We shall denote q / =  
supz~4o ~ .  We introduce the constants f2 and C by 

es inf O k ( I ) ,  C -1 ~2k 
;~A~ = 012 p (4.6) 

and assume [having in mind the case of k(I) quadratic in I ]  that both s 
and C remain finite and different from 0 for e ~ 0. Finally, for technical 
reasons, we also assume (as is not restrictive) 

pO <~ �88163 (4.7) 

We can now state the following result. 

P r o p o s i t i o n  2. Within the above assumptions, let 

e ~< e* = 2 9p~Qq/ J (4.8) 

Then there exists an analytic canonical transformation c g : ~ p ~ @ p ,  
(z, (p)= ~(z' ,  q0'), which conjugates h to 

h'=e-2k(I')+g(I',p',q')+e-E~'*/g]f(p',q',I',(p ') (4.9) 

with 

p~ ~ �89 z ~ q / z  (4.10) 
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Moreover,  one has 

I I' - I[ <~ 2-5  _~ p ~O 

For  the proof  of this Proposition, see Section 5.3. 

(4.11) 

4.2. Appl icat ions 

From Proposition 2 one can deduce two corollaries, corresponding to 
those of the previous section, for Hamiltonians of the form 

h = ~-7--s + +v(q,  Go) (4.12) 

with, for instance, v = vo(q)+ eVl(q, (P); neglecting some details for brevity, 
let us only give a sketch of them. 

(a) For the case of a bounded potential v(q, ~o), let Eo be the initial 
value of the rotational energy, so that I(O)=e(2CEo) 1/2, and take 
~ =  {I(0)}; then, for not too large values ofp(O)2/2m, one finds 

~3 2 
I I(t) - I(0)l ~< Vl ~ 11(0)1 = ~2 ~ E0 

(4.13) 
I2(t) - E o  e 
2CeZ <~ 73 ~s Eo 

for times Itl =74eexp[e* /e ] ;  T1,72,.-. are here positive constants, which 
could be easily computed. Notice that, because of the smallness of the 
body, the fluctuation v - g of the potential does not enter the balance of the 
rotational energy. 

(b) For  the case of scattering, working as in the previous case, one 
is led to 

I 2 ( + 0 0 )  12(--00)  
2Cg 2 2C~ 2 ~75e  E~*/~l (4.14) 

with suitable 75. 

5. PROOF OF P R O P O S I T I O N S  1 A N D  2 

5.1. The I terat ive Lemma 

In order to prove Proposition 1, we regard the Hamiltonian h = k + u 
as a perturbation of k+t~, and construct a sequence of "normalizing" 
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canonical transformations, each gaining an order in f2"/(2. Since we need 
an explicit estimate for the term of order Q*/g2 in h', we treat the first 
perturbative step separately. 

We work directly on the Hamiltonian vector fields, and not only on 
Hamilton functions. As shown in ref. 19, this procedure gives some advan- 
tage. Indeed, with small additional price, it leads to pure exponentials of 
the form exp(-f2/s instead of exp[-(~2/f2*)l/2], as in ref. 9 (see, 
however, ref. 10). 

As a rule, we denote functions by lowercase letters, and their 
Hamiltonian vector fields by the corresponding capital letters. For a 
Hamiltonian vector field W, corresponding to the Hamilton function w, we 
denote 11 W][~ = []wl[~, i.e., 

]]W[I+= max p~ ]W"[~ (5.1) 
a - -  p,q,I ,q~ 

ci denoting the conjugate variable of a. A similar notation is used for the 
local norm I[ Wllo, z. 

The proof of Proposition 1 is a consequence of the following temma, 
which, up to details, is quite typical in perturbation theory. 

I . emma 1 (On the normal form). Let the function 

h(p, q, I, qo) = k(I) + g(p, q, I) + f (p ,  q, I, O) (5.2) 

be analytic and bounded, together with its Hamiltonian vector field 
H =  K +  G + F, in the domain ~o (a ~< p). Fix any positive number e such 
that c~p < ~, and assume 

''+ 
s ~> max ' C p j  

C being defined as in (2.10). Then, there exists a real analytic canonical 
transformation 4: ~ - ~ o  ~ ~ which conjugates h to h'= k + g' + f ' ,  with 
g ' = g  + f;  the function f '  and its Hamiltonian vector field F' satisfy, for 
any z e A0 and a = p, q, L the local estimates 

16 
[F"I ~_ =p,~ ~< ~ [ NEll o,~(IG~I ~,~ + 2 [f~l ~,~) 

+ IFal ~.z(lIGII ~.z + 2 [IFIl~.+)] (5.43) 

32 F,~ o .< Pz ~ - ~ p , z ~  Ilfll~,z(llGIl~ + + 2 Ilfl/~,z) (5.4b) 

8 
! ~ G, z I f  I~ =o,~--~p2 (IIGII + 2  [IF/l~,z)If-fl~,z (5.4c) 
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Fur thermore ,  denot ing (z, r = cb(z', ~0'), one has 

l a ' _~ l  _< s -- ..~ s ]F~[~.~ ( a = p , q , I )  

_<8_ 
pi I~o'-~1 ~n/IFII~,~ 

(5.5) 

and also, for any function w: ~ --+ C, 

16 
Iwo q~ - wt ~_ ~p,~ ~< ~--~p2 Ilfl[ ~,z I wl ~,z (5.6) 

ProoL We construct  ~ as the t ime-one m a p  ~ x  of a suitable 
Hami l ton i an  vector  field 3(. This is the Lie method,  which is briefly 
recounted in the Appendix;  the relevant est imates are there repor ted  in two 
technical lemmas.  Let  us here recall that  for any function w and any vector  
field W, one has 

( ~ ) *  w = w + ~ f ( w )  = w + L x w  + ~ ( w )  
(5.7) 

(e~)*  w =  w + ~ ( ( w ) =  w + L x w + ~ ( w )  

where L x is the Lie derivative associated with the vector  field X, while 
~ * w = w o ~  and ~ * W = ( ( D ~ b - ~ ) W ) o q ~  are the pul lbacks of  w and W, 
respectively, and ~ ,  k = 1, 2, denotes  the k th  remainder  of the Lie series, 
defined as in (A.4) [-roughly speaking, x ~ k ( W )  is as small as [IX[I ~ ]1WI[]. 

In order  to normal ize  H, the vector  field X is chosen so to satisfy the 
equat ion 

L K X =  F -  F (5.8) 

Indeed, after this choice one gets for H '  = (~/iir)* H the form K +  G'  + F ' ,  
with G'  = G + ff and 

F '  = ~ '~ (G + F) + ~'X(K) (5.9) 

and it is not  difficult to recognize that  bo th  X and F '  turn out to be 
p ropor t iona l  to O-1 .  More  precisely, since K =  K ~ ( I ) 0 ~ ,  Eq. (5.8) reads in 
componen t s  

c3X ~ 
K ~~ F ~ -- F ~ I) -~-0 = ( a =  p, q, 

(~Xq~ .qt_ X I ~K~ K ~ F ~~ _ f f~ 
~ - -~=  ~I 
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and is readily solved by 

X ~ = ~-; (F ~ - F a) do'  (a = p, q, I) 

(use is made of F t=O) .  Since Y2~ JK<~ and C-I~> lOzK~(1)], one gets 
the estimates 

1 2 ]Xal~,z ~ (~ -Fp~)l/2lfa--Falr (a=p,q,I) cr, z 

1 2 1 2 iX~Ol~,<_~(~ +p2)1/2 iF~O F~ol~ ,z+~(~ + p ; ) I F ' - F ' l o ,  z (5.10) 

4 
< .(2p---~ HF-  FII o,~ 

(use is made of p~ ~< 1 and f2 ~> 8pz/Cp~), and then also 

We now make use of Lemma A2 of the Appendix. First of all, from this 
lemma one knows that 4~ x is well defined, and properly estimated, 
provided IIXIl~p2/8; by (5.11) and (5.3) this condition is fulfilled. 
Furthermore, the estimates (5.5) follow from (5.10), since one has 
[ ~ ( z ) ~ - a t  ~< IX~l .... while (5.6)is a consequence of (A.6b) and (A.5a). 

Let us now prove the estimates (5.4). First, from (5.10) and from the 
estimate (A.6a) of Lemma A2, one gets, for a = p, q,/,  

8 
~,z F a  ~<~--~p2 [IIF-FII~,z IG~+Fa[ +k F ~ -  I~,~ IIG+FII~,~] 

On the other hand, using (5.8), the estimates (A.5a) and (5.3) give 

1 

8 

This proves (5.4a); (5.4b) is proven similarly. 
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Finally, let us notice that the vector field X is Hamiltonian, with 
Hamilton function 

l f f  
)~ = ~-~ ( f -  f )  &o' 

Thus, ~1 x is canonical, and the new Hamiltonian h' = h o r x has indeed the 
form k+ g '+ f ' ,  with g ' =  g + f  and f ' = N X ( g + f ) + ~ X ( k ) .  Moreover, 
the function Z satisfies tZ[~,~<4E2 l t f - f l ~ ,  ~. Thus, (5.4c) follows from 
(A.6b) (A.6c), using also L x ( g + f ) = - L ( a + F ) Z ,  L x w = f - f ,  and 
(A.5a). ] 

5.2. Proof  of Proposit ion 1 

Let us denote by H ~ = K + G  1+F_1 the Hamiltonian vector field 
of the Hamilton function h given by (2.1), with G ~ = 0  and F_ 1 = U, U 
being the Hamiltonian vector field of the function u. We apply a first time 
Lemma 1 to H_  1, with c~ = 1/4 and a = p. This is possible, since in this case 
(5.3) is implied by (2.11). In such a way, we construct a first canonical 
transformation ~-1 ,  which gives the new vector field H o = c ( * l H _  1 the 
form 

Ho = K + Go + Fo 

with Go = U, while Fo and its Hamilton function f0 satisfy the estimates 

1 ~ *  
IF;l~p,z<~-~--ff lUatp, z (a=p,q , I )  (5.12a) 

l f2*  
Pz trS[]p,=<~ ~--ff Ilul[p,z (5.12b) 

1 (2" 
[ fol]p,~ ~<~ - f f  ]u - (l]o, z (5.12c) 

We can now apply r times Lemma 1, each time with e = 1/(4r), thus 
constructing the Hamilton functions h,+i  = h ,  oCgs and the corresponding 
vector fields Hs+l ,  s = 0 ,  1 ..... r - 1 .  Actually, it is enough to use here 
the inequalities of Lemma 1, with [IF-FI[ and I f a - r a l  replaced every- 
where by 2 ]]fl] and, respectively, 2 ]Fa]. Let us write p , =  (3/4-s/4r)p; 
proceeding inductively, one shows that after s steps, one gets a Hamiltonian 
vector field H s of the form H s = K + Gs + F,, s = 1 ..... r, with 

s - - 1  

G, = Go + ~ Fj (5.13a) 
j = o  
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1s 
[F']lps,~<~-~-ff lU~lp,~e -" (a=p,q , I )  (5.13b) 

1s 
PI IF~f p,,~ ~< ~ - ~  11 g]] p.~ e -~ (5.13c) 

Indeed, by (5.12), these relations are true for s = 0 .  Assume then that s 
steps have been performed. If s I> (2Sr/p 2) liE, lip,, we can apply once more 
Lemma 1, arriving at H, + ~ = K + Gs + ~ + F s + 1, with G~ + ~ still of the form 
(5.13a) and Fs+ 1 satisfying 

26r 

+ [falp,.z(IbGsHp,,z + 2 ILCllp,,z)] (5.14) 

with a similar estimate for the p component. Let us now observe that, by 
(5.13b), one has 

IG~lps.~+RIf'~lp~,z~tGglp, z+lfTIp,,z+ ~ IF]loj.z<~lS"lo,~ (5.15) 
j -  0 

Then, from (5.14) we see that the inequalities (5.13b) and (5.13c) are true 
also for s + 1, provided (3/16)(f2*/s ~ 1/e. In order to satisfy this condi- 
tion, we simply choose r = [s163 Notice that with such a value of r, one 
has also s (28r/p 2) I[FjHpj for all j =  0, I,..., s +  1. 

In such a way, one constructs the final Hamiltonian hr=k+ gr+f,'" 
This coincides with h' given by (2.13), g~ andf r  being related to g a n d f v i a  
g~=i-t+(s163 f~=(s163 e-~Om*~f Then (2.14c) follows from 
(5.t3b). Concerning the estimates (2.14a), (2.14b), it is sufficient to notice 
that (5.4c), (5.13), and (5.15) imply 

1 
if,+~lp,+,,z ~< 2 7 II Ullp r Ifs[p~,~-~ IAIp~,~ 

s 

to conclude 

[Llp,,z ~ 2  -35 [u-K[ 
10s p,z 

- r 1 This proves (2.14b), since r~> 1. From tgr--U[�89 z~_,j=O I~lp~,z one then 
deduces (2.14a). 

Finally, the estimates (2.15) on the overall canonical transformation 
cd=(g 1o~o . . . . .  ~r 1 are easy consequences of (5.5), (5.6), (5.12), and 
(5.13). I 
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5.3. Proof of Proposition 2 

The proof of Proposition 2 differs only slightly from the proof of 
Proposition 1. We work in domains ~ . c ~ p ,  the extension a now 
depending (as p) on ~ through its I component, namely 

In these domains we use for vector fields the norm 

[]WII.= max pOlW~l. 
a =  p,q,I ,~p 

where pO=p~ for a # L  We then consider the Hamiltonian vector field 
H = e - 2 K + G + F ,  analytic in ~o, which is assumed to satisfy GI=O, 
p~ ]FZ].,z<<. e ~ ,  and rlFPl.,~..~. 

The following lemma replaces Lemma 1: 

k e r n m a  2. In addition to (4.6) and (4.7), assume 

e <~ 2-60~f2p2 ~ - t 

Then there exists an analytic canonical transformation ~b: ~ .  ~p ~ ~ .  such 
that one has ~ * H =  e 2K+ G' + F',  with G' = G + F and 

24r 
[F'~t._ ~,,,~ c~,.Qpo ~< ~ []F+I.,~(I[GII.,z + 2Jz) 

+ ~ ( I G ~ I . , . +  2 I f~  ( a = p , q , I )  

2% 
[F'~~ ~p,z <~Tp~ ~'~(llGll"'z + 2 4 )  

Furthermore, writing (z, (p) = q~(z', p'), one has, for z e Ao, 

8e 
[ a ' -  aF ~< ~ IF ~1 + (a = p, q, I) 

The proof of Lemma2 goes the same way as for Lemma 1, with the 
following differences. Let r = ~x,  with II defined by the equation L~cX= 
e2(F - F); one has now the estimates 

8e ~ 8 e ~  
IX~ I F I.,z ~ b-pTpo 

8e2~ 

E2p~ 

8eo% 
Ix~ol.,z -< o00 

(a = p, q) 
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The key point is that one has 

max ~ 
b ~ P b  2,  

i b 
max '- 

b ~Pb ~P~ 

and also 
b 

max .... ~< - -  
b ~Pb ~-QP~ 

Proposition 2 is then obtained by iterating the construction of Lemma 2, 
with c~ = 1/(2r) and r = [~*/e]. 

6. CONCLUSIONS: SOME CRITICISM, AND OPEN PROBLEMS 

The Boltzmann-Jeans conjecture on the classical "freezing" of fast 
rotations was here proven, although in connection with a rather particular 
class of models. Unfortunately, for several important reasons our results 
are yet too poor for a physical interpretation. First of all, the planar 
problem we deal with is physically dissatisfying. The corresponding three- 
dimensional problem, that is, the problem of the energy exchanges between 
the translational and the rotational degrees of freedom of a fast rotating 
rigid body, is obviously more difficult, but certainly much more interesting. 
Work is in progress in this direction; in fact, we are convinced that the 
exponential laws (1.2) and (1.3), if conveniently adapted (and somehow 
worsened), also hold for the three-dimensioal problem, at least in the case 
of the point-mass limit. 

Let us also remark that even in the planar case we are still far from 
a complete understanding of the Boltzmann-Jeans conjecture. For exam- 
ple, it would be important to study a model including simultaneously fast 
rotations and fast vibrations. This means that one should develop a pertur- 
bative scheme with two parameters, and go beyond the usual decomposi- 
tion of the variables into fast and slow ones, by introducing (for rotations) 
an intermediate class. As a result, one should be able to put in evidence dif- 
ferent freezing phenomena, occurring at different time scales. Still, in view 
of the physical understanding, one should also study, in addition to the 
molecule-wall collision, the collisions between two or more rotating 
molecules (the corresponding problem for purely vibrating molecules was 
studied in ref. 10). As a matter of fact, such a problem turns out to be 
technically related to the study of the three-dimensional rotations, so we 
hope to be able to treat both problems at the same time. 

As a final remark, let us make a comment on the relation between the 
present paper and ref. 16, where, as recalled in the Introduction, one 
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studies numerically a particular Hamiltonian system belonging to the class 
considered here, namely of the form (1.1). One could simply say that we 
did prove here some of the results exhibited there (apart from the estimate 
of the constants, 5 which, as is typical of classical perturbation theory, 
is somehow dissatisfying). But in fact, it is quite evident that, even 
qualitatively, our analytic results are somehow poor if compared with the 
richer phenomenology revealed by the numerical simulation. Although 
some relevant phenomena (in particular, the presence of two different 
exponential laws for the maximum energy exchange and for its average on 
the initial phase) can be certainly explained by a more careful use of the 
transformed Hamiltonian, in our opinion it is not definitely clear whether 
perturbation theory alone can lead to a full understanding of the problem, 
and in general of the Boltzmann-Jeans conjecture. Our feeling is that some 
other tools, for example, some rigorous version of the already quoted 
heuristic approach by Jeans, Landau-Teller,  and Rapp, should also be 
taken into consideration. We hope to come back to this question in a 
forthcoming paper. 

A P P E N D I X :  T H E  LIE M E T H O D  

We give here a sketch of the Lie method for vector fields; for more 
details and general references, see ref. 19. The Lie method is a transforma- 
tion theory based on the realization of (canonical) diffeomorphisms close 
to the identity, as flows of (Hamiltonian) vector fields. Let us denote by COl 
the map at time z associated to the vector field X. At the basis of the 
method there are the well-known identities 

d (col ) ,  w = (col)* Lxw & 
(A.la) 

d 
dzz (COx), W =  (COx), Lx  W (A.lb) 

relating time derivatives along the flow to Lie derivatives. Here, CO*w = 
wo CO and co*W= ((DCO -1) W) o CO denote, respectively, the pullbacks of the 
function w and of the vector field W under the mapping CO. Let us also 

5 It would not be difficult, although somehow annoying, to improve the numerical constants 
appearing in (2.12) and (4.8) by, say, a factor 10. Of course, this does not change the essence 
of the problem. 
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recall that the Lie derivative L x  acts on functions and on vector fields, 
respectively, according to 

Ow 
L x w  = ~, X ~ c~--s (A.2a) 

a 

( L x  W)  ~ = L x  W ~ - L w X  ~ (A.2b) 

An iterated use of (A.2b) leads in a trivial way to the "Lie series" represen- 
tation of the "Lie transform" W~--~ (CblX) * W: 

_: i  x 
s = 0  

(A.3) 

In the analytic case, the convergence of such a series expansion is easily 
established (see Lemma A1 below). For  any k = 1, 2,..., the kth remainder 
~ x ( w )  of the Lie series (A.3) is defined by 

R ~ W =  ~ - L~x W (A.4) 
s=k  S! 

Completely analogous expansions are obtained for functions. 
We now produce two lemmas, reporting some rigorous estimates on 

the Lie series; detailed proofs can be found in ref. 19. We consider a 
function w and two vector fields X and W, defined and analytic in the 
domain ~p; a, p, and c~ are as above. We refer to the supremum local 
norm (2.6). 

I_emma A1 (On Lie derivatives). For any z ~ A o  and any s-- 1, 2,..., 
one has 

ILxw[~ ~; ~ ~< (mbax [Xht~ ~P'z~ ]wL~ _ . ,  ~P~ / (A.5a) 

1 ~ _<( IXbl~,~ ~-1 
s! [(L~v W) l o_ ~p -.~ 4 max 

b ~Pb / 

IW I~,z IX f~,z 
x IXal~,z max + I W~[~,~ max (A.5b) 

c~pb b c~Pb A 

Sketch of the Proof. The inequality (A.5a) is simply proven by a 
Cauchy estimate of the time derivative at the lhs of (A.la). Concerning 
(A.5b), one uses instead (A.2b), (A.Sa), and an inductive procedure. I 
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L e m m a  A2 (On Lie transforms). Assume IX~]o <<, ~p"/8, for 
a = p, q, I, q0. Then: 

(i) The mapping q s ~ c : ~ _ ~ p ~ b x ( ~ _ ~ p ) c ~  is an analytic 
diffeomorphism, and for each z E A 0 one has ~x(@~ ~p,z) c ~ - b p . ~ '  

(ii) The vector field (~bl~) * W and the function (~bx) * w are analytic 
in ~ _ ~ p ,  and one has, for any ZeAo: 

~p.~<~ 2 [ IXal~,,, max 
L b 

I~Xwl~ ~,z <~ IL~wl~_ b~,z 

[Wbl~'~+ JW~l~.max IXbl~'~] (A.6a) 
~Pb '- b ~Pb A 

(A.6b) 

(A.6c) 

Sketch of  the ProoL The statement (i) is an elementary consequence 
of general properties of ordinary differential equations; in particular, the 
inclusion property for ~b~(~ ~p,z) follows from the a priori estimate 
I(~blXZ)a-a] ~< IXal. The estimate (A.6a) is obtained in a simple way using 
(A.3) and (A.5b). Finally, (A.6b), (A.6c) follow from writing ~X(w)= 
~(Lxw)o  qsx~ dr and ~X(w) = ~ dr' ~o(L2xw) o q5 x dr'. | 

Remark. Using the norm (5.1), the inequalities appearing in 
Lemmas A1 and A2 take the slightly more compact form 

ILxwl,~ ~,, <~ IlXll,,_~p,z Iwl~,= (A.7a) 
- -  ,z ~ p 2  

1 a .< 1 (4 ]lX[l~,z~'-' 

x [ IXal ~,z fl WII ~,= + I W"I~,~ IlXll ~ ,z]  (A.7b) 

2 a 
- -  o - ,  z !(~W)al~-~p,z ~< ~p2 [ I x  I~,z If wIl + I Wal~,= rlXll~,z] (A.7c) 
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